

Premesse

La presentazione non ha pretese di completezza ed intende unicamente informare in breve sullo studio eseguito da METAS (Uff. federale metrologia) su mandato dell'UFSP (Uff. federale della sanità pubblica) e del UFE (Uff. federale dell'energia) sul tema delle lampadine a LED.

N.B.: Sono state analizzate 34 lampadine/lampade a LED in commercio nel 2015 (essenzialmente per uso in ambito domestico)

Vedi

http://www.bag.admin.ch/themen/strahlung/03710/15953/index.html?lang=it

Se non indicato altrimenti, le informazioni qui indicate provengono da tale fonte.

svizzera energia

Efficienza energetica &

Efficienza

energetica in

Oggi i LED hanno raggiunto un'ottima efficienza energetica (lumen emessi per watt di potenza elettrica assorbita)

Fonte: Brochure
"Illuminazione
efficiente nelle
economie
domestiche", UFE,
2014
Nr. 805.904.i

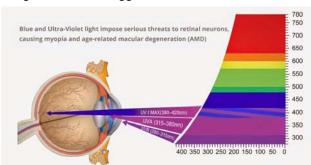
Svizzera energia

Introduzione (1/2)

Le lampadine a LED sono una valida alternativa alle lampadine a basso consumo energetico e alogene per l'illuminazione ad alta efficienza energetica di interni ed esterni.

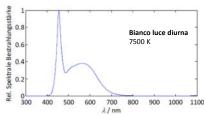
Per motivi tecnici, le lampadine a LED non sono in grado di produrre (direttamente) luce bianca, ma emettono componenti di luce gialla e blu, che insieme danno luce bianca.

Poiché a partire da una determinata intensità e durata dell'esposizione la luce blu rappresenta un rischio per la retina dell'occhio, è stato fissato un valore limite, il quale viene raggiunto, secondo l'intensità, dopo un'esposizione più o meno prolungata.


Se usate correttamente, le lampadine a LED in commercio non rappresentano alcun rischio per la salute, nemmeno per i gruppi sensibili come bambini o persone con cristallini molto trasparenti o artificiali, o prive di cristallino.

5

"Rischio da luce blu" (Blue light hazard)


 Meccanismo: nell'occhio vengono generate molecole reattive di ossigeno, che danneggiano la retina.

Fonte immagine: Internet (generico)

Caratteristiche dello spettro luminoso dei LED bianchi

- Componente ultravioletta e componente infrarossa: trascurabili
- Componente nello spettro visibile
 - · rischio da luce blu?
 - effetti sui ritmi circadiani?
- Sfarfallio?

"Rischio da luce blu" - normative

- Regolamentazione attuale: Ordinanza sugli impianti a bassa tensione, OIBT. Norma: EN 62493: 2010
- La norma suddivide le lampade in gruppi a seconda del rischio (durata di esposizione a partire dalla quale viene raggiunto il valore limite, misure alla distanza dove si hanno 500 lux)
 - gruppo esente: esente anche per esposizioni della retina fino a 10'000 s (166.6 minuti)
 - gruppo di rischio 1: "rischio basso" (esente da rischi < 100 s)
 - gruppo di rischio 2: "rischio moderato" (esente da rischi < 0.25 s)
 - gruppo di rischio 3: "rischio elevato" (rischi già da subito)

8

"Rischio da luce blu"

- Scenario studio UFSP UFE:
 - misure alla distanza di 10 cm (accomodazione bambini), rispettivamente 20 cm (adulti)
 - occhio con cristallini e sensibilità normale alla luce blu/ occhi con cristallino molto trasparente (ICNIRP GUIDELINES ON LIMITS OF EXPOSURE TO INCOHERENT VISIBLE AND INFRARED RADIATION, 2013. In: Health physics 105 (1), pagg. 74-96.)

11

Risultati testi sul rischio da luce blu

Forma del LED	Distanza lampadina-occhio				
	10 cm		20 cm		Gruppo di rischio
	Sensibilità dell'occhio alla luce blu			(GR)	
	Normale	Elevata	Normale	Elevata	
Forma di lampadina a incandescenza, attacco a vite, opaca	412 / >500	404 / >500	431/>500	424 / >500	Gruppo esente
Forma di lampadina a incandescenza, attacco a vite, trasparente	53 / >500	49 / >500	76 / >500	71 / >500	GR1 / Gruppo esente
Faretto opaco	1.5/9	1.4/8.5	1.5 / 14.6	1.5 / 13.8	GR2 / GR1
Faretto trasparente	5.2 / >500	5 / >500	5.6 / >500	5.4 / >500	GR1 / Gruppo esente
Forma tubolare in sostituzione di un tubo fluorescente	338 / >500	321 / >500	>500	>500	Gruppo esente
Riflettore	2.7 / 258	2.6 / 243	2.9 / 320	2.7 / 301	GR1 / Gruppo esente
Lampada da tavolo	1.8 / 368	1.7 / 353	2 / >500	1.8 / >500	GR1 / Gruppo esente
Faretto da giardino	4 / >500	3.8 / >500	14.7 / >500	13.3 / >500	GR1 / Gruppo esente
Striscia, forma cilindrica, faretto da terra	>500	480 / >500	>500	>500	Gruppo esente

Tabella 1: durata dell'esposizione in minuti superata la quale il rischio da luce blu in caso di esposizione diretta al LED è possibile. Per ogni forma sono indicati i prodotti a LED con la durata di esposizione più breve e più lunga alle distanze di 10 cm e 20 cm.

Esempio:

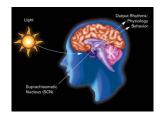
- LED, forma di lampadina a incandescenza, attacco a vite, trasparente
- occhio con sensibilità normale
- distanza 20 cm (adulto)

Risultati del test:

 durata di esposizione alla quale si raggiunge la soglia del rischio da luce blu: tra 76 secondi (modello più "problematico") e > 500 secondi (modello meno "problematico"

Ritmi biologici (1/2)

Molti processi biologici dell'essere umano si svolgono secondo un modello temporale prestabilito o sono soggetti a ritmi di 24 ore ("circadiani"), comandati essenzialmente dal cosiddetto «orologio interno» localizzato nel cervello.

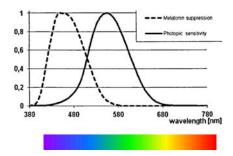

Dato che non è impostata su un ritmo fisso, questa funzione cerebrale viene risincronizzata ogni giorno con l'aiuto della componente blu della luce diurna che, a partire dal mattino, colpisce la retina dell'occhio.

La luce blu viene assorbita dai neuroni della retina sensibili alla luce, i fotorecettori, e trasformata in impulsi nervosi trasmessi all'orologio interno nel cervello.

In base a questi impulsi, l'orologio interno definisce la produzione di **ormoni**, come la **melatonina** o il **cortisolo**, il **funzionamento del sistema immunitario**, la temperatura corporea, il ritmo sonno/veglia, l'efficienza mentale e numerosi altri processi (CIE 2009).

Ritmi biologici (2/2)

La **luce blu**, molto presente nella luce diurna, ha un effetto **attivante** sull'organismo al mattino e durante il giorno.

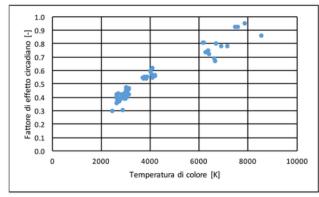

La sera o di notte, questo effetto attivante può invece avere **conseguenze indesiderate**, dato che trasmette all'organismo informazioni per la fase diurna, sebbene questo si trovi nella fase notturna, interferendo così con i processi che lo preparano al sonno o che si svolgono durante il sonno.

→ Possibili effetti : difficoltà ad addormentarsi, ritmi fisiologici disturbati, danni alla salute anche gravi e a lungo termine.

15

Normative: fattore di effetto circadiano (1/2)

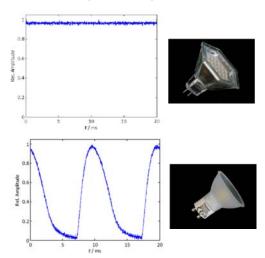
$$a_{mz,v} = \frac{\int X_{\lambda} \cdot m(\lambda) \cdot d\lambda}{\int X_{\lambda} \cdot V(\lambda) \cdot d\lambda}$$


Rapporto della componente con effetto circadiano di una fonte luminosa rispetto alla componente visibile

Lettura:

- fattore 1: ca. lo stesso effetto della luce diurna all'aperto, con cielo nuvoloso
- fattore < 1: effetto attivante minore rispetto alla luce diurna

Normative: fattore di effetto circadiano (2/2)



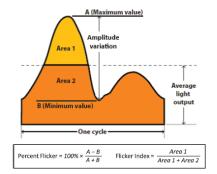
Lettura:
Temperature di colore elevate implicano un fattore di effetto circadiano (ed un effetto attivante sull'organismo) maggiori.

Figura 3: effetti circadiani delle lampadine a LED: fattore di effetto circadiano (rapporto della componente con effetto circadiano di una fonte luminosa rispetto alla componente visibile) in funzione della temperatura di colore (34 LED diversi).

Sfarfallio ("flicker")

La luce emessa dai LED può sfarfallare se la corrente che vi passa non è costante nel tempo.

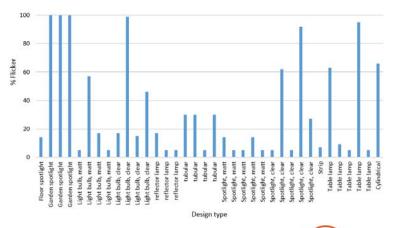
Causa: corrente alternata a 50 Hertz.


Se i trasformatori elettronici delle lampadine a LED non equilibrano questi cambiamenti, anche la luce prodotta dal chip non è costante.

Lo sfarfallio può però insorgere anche con il ricorso ai dimmer.

Sfarfallio ("flicker")

Percentuale di sfarfallio = 100% x (max-min)/(max+min)


Fonte immagine: US DOE, http://apps1.eere.energy.gov/bui ldings/publications/pdfs/ssl/flicke r_fact-sheet.pdf

16

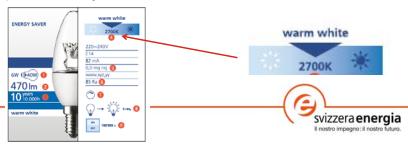
19

Sfarfallio: forti differenze a seconda del prodotto

Conclusioni – regole empiriche (1/5)

- In linea generale, tenere **almeno 20 cm di distanza** dalle lampadine a LED.
- Utilizzare le lampadine a LED del gruppo «esente» nelle situazioni in cui gli occhi sono esposti per molto tempo alla luce diretta. Di questo gruppo fanno parte soprattutto i LED a forma di lampadina a incandescenza con superficie opaca e attacco a vite, e i tubi a LED.
- Per le abitazioni sono adatte anche le lampadine a LED del gruppo 1, che non comportano alcun rischio per gli occhi se le persone non le guardano direttamente per un tempo prolungato. A questo gruppo di rischio appartengono prevalentemente i faretti a LED e in parte le lampade da tavolo.

Conclusioni – regole empiriche (2/5)


- Non utilizzare lampadine a LED dei gruppi 2 o 3 in ambito privato, dato che basta una brevissima esposizione diretta degli occhi per riportare danni acuti. Il gruppo di rischio 2 o 3 è indicato sulla confezione.
- Nel limite del possibile, montare i lampadari, le lampade da tavolo e da lettura e le abat-jour con chip LED a vista in modo che quest'ultimo non sia direttamente visibile. Le lampadine opache riducono possibili abbagliamenti.

Conclusioni – regole empiriche (3/5)

• Nei locali in cui le persone si trattengono a lungo durante le ore serali prima di coricarsi, utilizzare lampadine a LED di colore bianco caldo o lampadine a basso consumo energetico con temperature di colore di circa 3000 Kelvin. Le temperature di colore sono indicate sulle lampadine. Le lampadine a luce bianca fredda con temperature superiori ai 4000 Kelvin sono meno adatte a spazi simili, dato che la componente blu della luce ha una funzione attivante sull'organismo e influisce sul sonno e su altri processi fisiologici.

20

Conclusioni – regole empiriche (4/5)

- Alcuni prodotti a LED e in parte anche le lampadine a LED dimmerate possono sfarfallare. Non è chiaro se ciò rappresenta un rischio per le persone che soffrono di mal di testa, emicrania o epilessia.
- Per questa ragione, per i luoghi in cui le persone si trattengono per periodi prolungati vanno utilizzate lampadine a LED prive di sfarfallio o non dimmerate. L'eventuale sfarfallio del LED può essere facilmente accertato sullo schermo di uno smartphone o di una fotocamera digitale, mettendo a fuoco il LED acceso da una distanza ravvicinata: se sullo schermo appaiono delle strisce, il LED sfarfalla.

Conclusioni – regole empiriche (5/5)

- Essendo ampiamente inferiori al valore limite stabilito per evitare rischi per la salute, i campi elettromagnetici generati dalle componenti elettroniche durante il funzionamento dei LED non presentano alcun pericolo in questo senso.
- Le lampadine a LED sono una valida alternativa alle lampadine alogene o a basso consumo energetico per le persone ipersensibili ai raggi ultravioletti, dato che non ne emanano o ne emanano solo in misura minima.

